Optimiser la tendreté de la viande d'agneau :

Comprendre et utiliser les événements et les procédés postmortem

Eric Pouliot^{1,2} M. Sc. (Ph. D. en voie d'obtention) Spécialiste en qualité de la viande

En collaboration avec

C. Gariépy³, M. Thériault^{1,4} et F. W. Castonguay¹

¹Université Laval, Qc, Canada; ²Centre d'expertise en production ovine du Québec, Qc, Canada; ³ Centre de recherche et de développement sur les aliments, AAC, Qc, Canada, ⁴Centre de recherche et de développement sur le bovin laitier et le porc, AAC, Qc, Canada.

Contexte

- > Deux types de consommateurs
 - ✓ Dont la consommation est ancrée dans leurs mœurs et coutumes
 - ✓ Épicuriens amateurs de gastronomie = plaisir!

Difficile de rivaliser avec les prix des concurrents

La qualité... un enjeu important

Ressources humaines + monétaire\$ = recherche et développement

Pourquoi postabattage?

- 1. Beaucoup d'influence sur la qualité (Sañudo et al. 1998)
- 2. Peu d'abattoirs au QC (passage obligé)
- 3. Réalité d'abattage
 - ✓ Abattoirs multiespèces
 - ✓ Refroidissement rapide des carcasses
 - ✓ Carcasses plus petites... refroidissement trop rapide?

Pourquoi le postabattage

> Refroidissement trop rapide réduit la tendreté de la viande

Rétrécissement par le froid (Locker et Hagyard 1963, Locker 1985)

Calcium + énergie = contraction

```
T ^{\circ} < 10 ^{\circ}C \longrightarrow calcium pH > 6,0 \longrightarrow énergie
```

- > La maturation améliore la tendreté de la viande
 - ✓ Protéolyse musculaire (Koohmaraie et Geesink 2006; Kemp et al. 2010)
 - √ 80 % du potentiel de tendreté atteint en 7,7 j (Dransfield et al. 1981; Dransfield 1994)
 - ✓ Tendreté = 1^{er} critère d'appréciation (Touraille 1994)

Stimulation électrique

- > Un outil pour gérer la chute du pH et de la température
- > En accélérant la glycolyse (et la chute du pH) :
 - ✓ Prévient le rétrécissement par le froid (Devine et al. 2004)
 - ✓ Accélère l'attendrissement (Simmons et al. 2008)?

- Fenêtre recommandée par le programme australien « Sheep Meat Quality » (Thompson et al. 2005; Pearce et al. 2009) :
 - ✓ pH 6,0 atteint entre 18 et 25 °C (18 et 35 °C)

```
Si le pH 6,0 est atteint à une température :
```

< 10 °C = rétrécissement par le froid

> 35 °C = rétrécissement, dénaturation des protéines

Objectifs

- ✓ Déterminer si les **pratiques postabattage** actuelles **permettent** à la viande d'agneau du Québec **d'exprimer son plein potentiel** en termes de qualité organoleptique et particulièrement de **tendreté**;
- ✓ Déterminer **l'impact de la stimulation électrique** et de la **maturation** sur les différents paramètres de **qualité organoleptique**, mais plus **particulièrement** sur la **tendreté** de **l'agneau du Québec**;
- ✓ Optimiser et de comprendre de quelle manière la stimulation électrique et le refroidissement affectent la qualité de la viande;

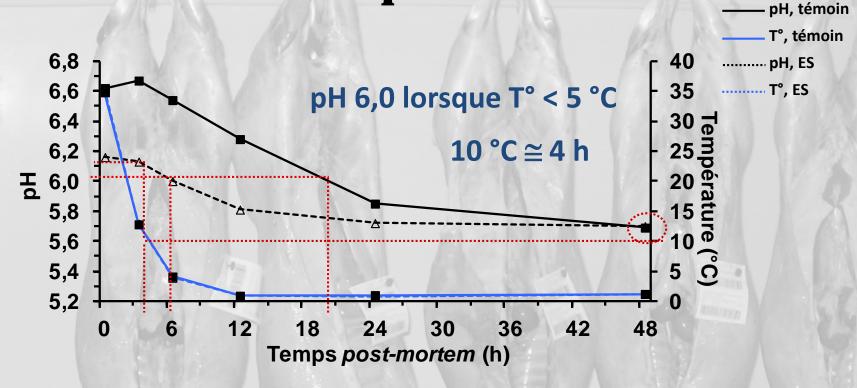
Hypothèses

- ✓ Les carcasses des agneaux lourds du Québec sont refroidies trop rapidement et elles sont sujettes au phénomène de « cold shortening »;
- ✓ La stimulation électrique ainsi que la maturation pourraient grandement améliorer la tendreté de la viande d'agneau produite au Québec;
- ✓ Il y a une **fenêtre de température idéale** pour que les carcasses atteignent le **pH 6,0** (18 à 25°C) **qui favorise la tendreté** de la viande en minimisant la contraction musculaire et en favorisant la protéolyse;

Projet ES1 (nº 6125)

76 agneaux mâles (48 à 52 kg)

38 carcasses ES
(21 V; 0,25 A; 60 sec)
38 carcasses NES


- √ pH, T° et échantillons musculaires (0-24 h)
- ✓ sections du LD, maturation de 1, 3 ou 8 jours

- pH ultime;
- Couleur (L*, a*, b*);
- Pertes en eau et à la cuisson;
- Force de cisaillement;
- IFM indice de fragmentation myofibrillaire;
- Longueur des sarcomères;
- Analyse sensorielle.

ES = stimulées (« electrical stimulation »)

NES = témoins

Chutes du pH et de la T°

ES = pH 6,1 atteint à 10 °C

Fenêtre optimale: pH 6,0 atteint entre 18 et 25 °C

Même pH ultime

Résultats

	Traitements postabattage									
	NES			ES				Valeur de P		
Variables	1 j	3 ј	8 j	1 j	3 j	8 j	SEM	S	M	S×M
Force de cisaillement (kg)	7,69	6,00	4,25	5,39	4,36	2,81	0,38	< 0,001	< 0,001	0,292
Fermeté	4,88	4,71	3,74	4,48	3,56	2,97	0,17	< 0,001	< 0,001	0,023
Longueur des sarcomères (µm)	1,67			1,75		MA	0,01	< 0,001	3/	
IFM	89,7	104,8	112,9	89,3	101,8	112,6	4,18	0,743	< 0,001	0,774

La **stimulation** — Longueur des sarcomères

La maturation --- L'IFM

Discussion

- ✓ La stimulation réduit le risque de «cold shortening»
- ✓ La maturation favorise la dégradation protéique
- ✓ La stimulation n'accélère pas la protéolyse

Chute de la température trop rapide???

« La température chute si rapidement que le muscle est déjà à 1-2°C lorsque le rigor mortis est atteint! »

Loin de la fenêtre optimale proposée par les Australiens

Projet ES2 (nº 09-C-54)

- > 128 carcasses d'agneaux mâles lourds (poids de la carcasse chaude : 22,3 ± 0,2 kg)
- 8 jours d'abattage (16 agneaux/j)
- > 4 traitements, selon un plan 2 x 2 :
 - ✓ NES_N : Pas de ES et refroidissement normal;
 - ✓ ES_N : ES et refroidissement normal;
 - ✓ ES_L : ES et refroidissement lent;
 - ✓ NES_L : Pas de ES et refroidissement lent.

Refroidissement normal (N): 24 h à 1,1 ± 1,4 °C

Stimulation électrique (ES): stimulation de 30 sec à l'aide d'un appareil industriel à

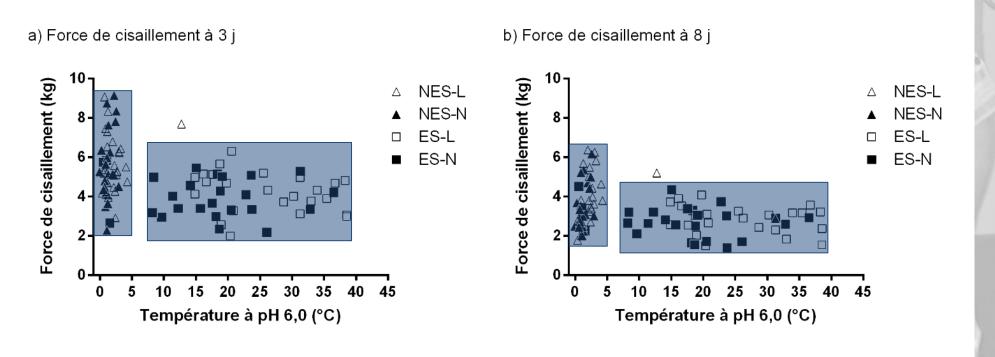
bas voltage (21 V RMS; 0,25 A; Jarvis, Modèle ES-4, Middletown, CT)

Refroidissement lent (L): 3 h à 9,6 ± 1,0 °C puis refroidissement normal

Mesures

- ✓ pH et T° (0,75, 2, 3, 6, 12, 24, 48 h) du muscle LL
- ✓ Carrés maturés pendant 3 ou 8 j à 4 °C
- ✓ Couleur (variables L^* , a^* et b^*) sur muscles décongelés
- ✓ Pertes à la cuisson
- ✓ Force de cisaillement (Warner-Bratzler)
- ✓ **IFM** (indice de fragmentation myofibrillaire)
- ✓ Longueur des sarcomères

Résultats imprévus



(Interbev, 2006)

- > % de viande ayant un pH ultime > 5,8
 - √ Viande d'aspect « DFD » (foncée, ferme et sèche)
- > Pas suffisamment d'énergie = pH plus élevé
 - √ Stress préabattage?
 - Transport, contact avec d'autres animaux, manutention
- > Simple indication... des études plus poussées s'imposent!

Les résultats... en résumé

- > Pas de température optimale au pH 6,0?
- > Variation sur le plan de la tendreté

Acceptabilité

Seuil d'acceptabilité: 5 kg (Shorthose et al., 1986; Safari et al., 2002)

Proportion de la viande qui a atteint une tendreté acceptable provenant des carcasses non stimulées (NES) et stimulées (ES) suite à une maturation de 3 ou 8 j

	NI	ES	ES			
	3 j	8 j	3 j	8 j		
ES-1	25 %	67 %	65 %	100 %		
ES-2	35 %	79 %	76 %	100 %		

(Pouliot et al. 2012, 2014)

Conclusion

- > Il est possible d'améliorer la tendreté
 - ✓ Maturation
 - ✓ ES... comme outil?
- > Les protocoles doivent être ajustés et vérifiés
 - ✓ Mesures de la réaction à l'abattoir
- > Les pratiques préabattage sont importantes
 - ✓ Énergie et pH
 - ✓ Tendreté

Soutien financier et technique

Agriculture, Pêcheries et Alimentation

Québec

Abattoir Luceville inc., Abattoir Rolland Pouliot & Fils inc., Abattoir Forget Ltée.

Agriculture et Agroalimentaire Canada Agriculture and Agri-Food Canada

